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Abstract

This paper presents a novel method for assessing hyporheic water quality
dynamics using advances in sensor technology. High-resolution (15 min)
dissolved oxygen (DO) and hydraulic head data were combined to assess
groundwater–surface water (GW–SW) interactions in the hyporheic zone.
DO concentrations varied at fine temporal and spatial scales, depending on
the relative contributions of GW and SW. The effect of sample frequency
on observed patterns of variability was assessed with reference to studies
of the ecology of salmon spawning habitat. Conventional approaches fail to
capture the full range of temporal variability in hyporheic water quality and
demonstrate the need to reassess the interpretations of previous studies of the
hyporheic zone. Copyright  2006 John Wiley & Sons, Ltd.

Key Words hydrology; hyporheic; oxygen; ecology; salmon; redd; chemistry

Introduction
In recent years there has been increased recognition of the importance of
the hyporheic zone to the hydroecological functioning of river systems
(Hancock et al., 2005). Associated with this has been an increase
in hyporheic zone research and consideration of its importance in
legislation such as the Water Framework Directive of the European
Union. It is now clear that the physical and chemical characteristics of
the hyporheic zone can affect a wide range of hydroecological processes,
including nutrient processing (McKnight et al., 2004), microbial (Findlay
et al., 2003) and invertebrate communities (Storey and Williams, 2004).

One area of particular interest in hyporheic research has been the
influence of hyporheic processes on the reproductive success of gravel
spawning fish (Malcolm et al., 2003a, 2004; Groves and Chandler,
2005). Salmonids deposit their eggs in open gravel structures (known as
redds) to depths of up to 300 mm in the hyporheic zone. Embryo sur-
vival and performance between spawning and emergence, a period that
may be in excess of 5 months, is strongly influenced by the delivery
of sufficient oxygen to meet the requirements of developing embryos
(Malcolm et al., 2003b). Historically, fisheries scientists have viewed
the streambed (i.e. the hyporheic zone) in overly simplistic terms, often
assuming the stream itself to be the only source of water to the redd. This
led research to focus primarily on the role of fine sediment in determining
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hyporheic oxygen supply, and thus embryo survival.
However, a number of field-based studies have now
demonstrated that the link between sediment size
characteristics, streambed oxygen and embryo sur-
vival is not clear (Sowden and Power, 1985; Peter-
son and Quinn, 1996), and there is increasing real-
ization of the importance of groundwater–surface
water (GW–SW) interactions in determining
hyporheic water quality (Groves and Chandler, 2005).
In particular, recent studies have shown that the dis-
charge of chemically reduced (low dissolved oxygen
(DO)) groundwater may adversely affect embryo per-
formance in the hyporheic zone (Youngson et al.,
2005) and that GW–SW interactions can be highly
dynamic, changing rapidly over the period of a single
hydrological event (Malcolm et al., 2004).

Although hydrologists have inferred the nature of
GW–SW interactions from fine-resolution monitor-
ing of hillslope flowpaths (Haria and Shand, 2004;
Vidon and Hill, 2004), there have been few studies
using similar resolution hydrometric data to assess
exchange processes directly in the hyporheic zone
(Geist, 2000; Malcolm et al., 2004). Even rarer are
investigations combining high-resolution hydrochem-
ical and hydrometric data to characterize GW–SW
interactions in the hyporheic zone. Kirchner et al.
(2004) highlighted the potential of high-frequency
water quality monitoring for understanding the links
between hydrology and stream chemistry, noting that
most hydrochemical studies are based on data col-
lected at weekly or monthly intervals, sometimes with
more frequent sampling during individual hydrologi-
cal events. Such approaches miss much of the vari-
ability observed with continuous water quality mon-
itoring and fail to identify temporally variable event
responses that result from rapidly changing hydro-
logical conditions. These problems are exacerbated
in hyporheic studies, where it is necessary for equip-
ment to remain buried in the streambed for prolonged
periods without maintenance or recalibration, where
water velocities are generally low and where physical
access during hydrological events is often danger-
ous or impossible. These constraints have dictated
that, to date, very little high-resolution hydrochem-
ical data have been collected in hyporheic studies,
despite awareness that a number of key water qual-
ity parameters (which have a demonstrable effect
on hyporheic ecology) vary dynamically over time
and space. Within the last year, new technology has
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allowed high-resolution hyporheic oxygen measure-
ments to be made in situ using optical probes that
exhibit long-term stability, do not consume oxygen
during measurement and do not require a flow of
water past the sensor to obtain accurate readings.

In this paper we present data collected using this
new technology to assess the variability of dissolved
oxygen at fine temporal scales in the hyporheic zone
of salmon spawning gravels in an upland stream. Our
specific objectives are to: (i) characterize the temporal
and spatial variability of DO concentrations in an
artificial salmon redd; (ii) assess the influence of
GW–SW interactions in determining this variability;
(iii) evaluate the contribution that continuous water
quality data can make in improving our understanding
of hyporheic dynamics and ecological response.

Site Description
Detailed descriptions of the field site are avail-
able elsewhere (Malcolm et al., 2004). Briefly, Glen
Girnock is a semi-natural upland catchment in Scot-
land (Figure 1). It ranges in altitude from ¾230 to
862 m, and drains 30Ð3 km2. The geology is domi-
nated by igneous rocks (granite) with metamorphosed
rocks, including calcareous schists and serpentinite
elsewhere (Soulsby et al., 2005). The solid geology
is overlain by a variety of glacial sediments that form
the parent material for soils, which include peats, pod-
zols, gleys and brown forest soils. Land use is dom-
inated by heather (Calluna) moorland. The Girnock
receives approximately 1100 mm of precipitation and
a gauging station provides 15 min resolution dis-
charge data at Littlemill (Figure 1). The burn has
a mean discharge of ¾0Ð5 m3 s�1, varying between
<0Ð01 m3 s�1 in the summer and >23 m3 s�1 dur-
ing floods. FRS Freshwater Laboratory has monitored
Atlantic salmon populations since 1966 and produce
redd maps (<1 m resolution) to identify spawning
distributions. Spawning gravels are characterized by
a geometric mean diameter (dg) of 9Ð98 mm and
are strongly coarse-skewed, with a low fines con-
tent (<2 mm), contributing 12% to the sediment mass
(Moir et al., 2002). The area chosen for the study is
one of three main spawning areas in the catchment,
accounting for ¾22% of total spawning activity in
the Girnock Burn between 1986 and 1988 (Gibbins
et al., 2002). Previous work at this site identified tem-
porally variable GW–SW interactions using logging

Copyright  2006 John Wiley & Sons, Ltd. 2 Hydrol. Process. 20, 0–0 (2006)
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Figure 1. Topographic map of the Girnock Burn catchment showing
the location of the sampling site, SEPA flow gauge and FRS fish

traps

piezometers combined with traditional hydrochemical
sampling methods (Malcolm et al., 2004).

Methods
In November 2004 (spawning time), an artificial redd
incorporating two Aanderaa DO optodes was con-
structed in a location used by spawning salmon in pre-
vious years. Aanderaa 3830 optodes with analogue
converters (0–5 V) were connected to a Campbell

CR23X datalogger and programmed to sample DO
(per cent saturation) and temperature at 1 min inter-
vals, recording instantaneous and average measure-
ments every 15 min from surface water and 150 and
300 mm depths in the hyporheic zone (i.e. in the arti-
ficial redd). Prior to deployment, DO optodes were
cross-calibrated over a 3 week period in the labora-
tory at a range of oxygen concentrations and temper-
atures and showed excellent agreement between sen-
sors (within 1% oxygen saturation and 0Ð1 °C). The
manufacturers report that the typical time required
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between sensor calibrations is approximately 1 year
and, therefore, in excess of the duration of the study.

The nature of local GW–SW at the site was
assessed using hydraulic head data measured at depths
of 38 and 70 cm using piezometers containing
Eijkelkamp Diver pressure transducers with inte-
grated loggers and thermistors, as described by Mal-
colm et al. (2004). The direction of water movement
is inferred using the difference in head between the
two piezometers, with positive values indicating a
streamward hydraulic gradient and negative values a
gradient towards the bed. Owing to technical difficul-
ties, head data were only available for the period 16
November 2004–19 January 2005.

Results and Discussion

Figure 2 shows the temporal variability in stream
and hyporheic DO (150 and 300 mm) plotted rela-
tive to discharge for the period between spawning
and egg hatch. Throughout this period the DO satura-
tion in stream and shallow hyporheic water (150 mm)
remained high; typically, this was between 90 and
100%, varying in response to diurnal shifts in the
balance between respiration and photosynthesis. DO
at 300 mm initially exhibited similar patterns; but,
in early January, the DO response became more
dynamic in association with a series of hydrologi-
cal events. Low DO periods were associated with
increased catchment wetness in mid January, and
between mid February and mid March. These peri-
ods were characterized by highly variable conditions,
with DO typically falling below 40% saturation on
the recession limb of individual hydrographs. Pro-
longed base flow periods between late January and
early February, then again in late March were asso-
ciated with the re-establishment of high DO levels,
comparable to those found in surface water.

Figure 3 focuses on the period between early
December and mid January, when reductions in DO
at 300 mm were first observed as the catchment
responded to a prolonged period of increased precipi-
tation. Changes in DO are plotted relative to discharge
and differences in hydraulic head between depths of
38 and 70 cm in the hyporheic zone. Hydraulic gra-
dient data indicate increasingly positive streamward
hydraulic gradients as the frequency and magnitude
of hydrological events increased. This is consistent

Copyright  2006 John Wiley & Sons, Ltd. 3 Hydrol. Process. 20, 0–0 (2006)
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gradients are indicated where the difference in head between 70 and 38 cm exceeds unity, as indicated by the solid horizontal line
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with increased water table elevation in response to
groundwater recharge.

In general, the event-scale changes in hydraulic
gradient followed a consistent pattern (cf.ž Malcolm

AQ1

et al., 2004). At the event peak, the hydraulic gra-
dient became increasingly negative, presumably in

7
8
9

10
11
12

response to increased stream stage relative to ripar-
ian water table elevation resulting in a stream water
flux into the bed. On the recession limb, increas-
ingly positive hydraulic gradients were established,
which were assumed to result from increasing ripar-
ian groundwater levels and reductions in stream

Copyright  2006 John Wiley & Sons, Ltd. 4 Hydrol. Process. 20, 0–0 (2006)
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stage (Malcolm et al., 2004). Although patterns of
hydraulic flux were consistent between events, the
magnitude of gradients and changes in hyporheic
water quality were variable. Prior to 6 January, small
event-based occurrences of positive hydraulic gradi-
ent were not associated with changes in hyporheic
DO levels, as shown in Figure 4a. However, fol-
lowing catchment rewetting and the establishment
of increasingly positive hydraulic gradients, events
of similar magnitude were associated with rapidly
changing hyporheic DO concentrations. This is shown
in Figure 4b, where low DO concentrations associated
with the recession limb of a previous event increased
rapidly in response to increasing stream stage and
negative hydraulic gradients, before declining on
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32

the recession limb as positive gradients were re-
established.

Owing to the difficulties associated with hyporheic
sampling (as outlined above), previous hydroeco-
logical studies have failed to identify the nature
and significance of the frequency and magnitude of
changes in hyporheic processes, including changes
in GW–SW interactions and water quality. This has
resulted in widely varying sampling strategies that are
generally of much lower resolution than is required to
characterize the hyporheic environment. For example,
the focus of many investigations has been the influ-
ence of hyporheic DO levels on exposed organisms
such as salmonid embryos (Table I). In such stud-
ies, hyporheic sampling frequencies typically include

Copyright  2006 John Wiley & Sons, Ltd. 5 Hydrol. Process. 20, 0–0 (2006)
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Table I. Frequency of hyporheic oxygen sampling for studies of salmonid spawning habitat. Where sampling
frequency has not been stated explicitly, it has been derived from figures or numbers of samples in a specified

period

Study Sampling frequency

Youngson et al. (2005) Fortnightly
Groves and Chandler (2005) Monthly
Malcolm et al. (2004) Weekly
Bowen and Nelson (2003) 1–3 monthly (three occasions over 5 months)
Malcolm et al. (2003a) Weekly (with more frequent event-based monitoring)
Niepagenkemper and Meyer (2002) Monthly/bi-monthly
Ingendahl (2001) Fortnightly
Peterson and Quinn (1996) Weekly–fortnightly
Rubin and Glimsater (1996) Approximately fortnightly
Curry and Noakes (1995) Single sample, 24 h after samplers deployed
Curry et al. (1995) Monthly–bi-monthly (strategic to developmental stage of embryos)
Sowden and Power (1985) Approximately monthly
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Figure 5. Box plots showing the influence of sample frequency on observed patterns of DO variability based on 100 random samples of
continuous DO data at specified intervals: (a) monthly; (b) weekly; (c) daily

1
2
3
4

weekly, fortnightly, monthly or, in some cases, only
single samples. These sampling frequencies are long
in comparison with the hydrochemical response times
identified in the current study and, as such, risk

5
6
7
8

missing biologically important low DO episodes.
Figure 5 uses the continuous hyporheic water qual-
ity data (300 mm) collected in this study (Figure 2)
to demonstrate the effect of monthly, weekly, or daily
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sampling strategies using 100 random repeat samples.
At monthly sampling intervals, there is a high risk of
missing most of the variation in hyporheic DO con-
centrations. At weekly intervals, the general trends
of longer duration are observed, but extreme values
are underestimated; with daily sampling, more of the
variability is observed, but sampling fails to capture
extreme low values, which prevail for short periods.
We conclude, therefore, that any biological inferences
made on the basis of low-resolution sampling have the
potential to be highly misleading.

Implications
The data presented here show that at the Girnock
Burn study site hyporheic DO exhibits fine-resolution
temporal and spatial dynamics, which vary depend-
ing on the relative contributions of GW and SW.
GW–SW interactions respond to antecedent hydro-
logical conditions, prevailing stream stage and water
table elevation. Thus, hyporheic water quality can
vary at different time scales ranging from seasonal to
individual events. Moreover, events of similar mag-
nitude can produce marked differences in hyporheic
water quality due to the state dependence associ-
ated with antecedent conditions. To date, much of
the variability in hyporheic water quality parame-
ters (in this case DO) has probably been underesti-
mated owing to technological limitations on the res-
olution and timing of sampling in hyporheic studies.
These difficulties have been overcome, and there is
now a need to reassess the biological interpretations
of previous water quality studies of the hyporheic
zone.
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